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Abstract

The emergence of online paid micro-crowdsourcing platforms, such as Amazon Mechanical

Turk (AMT), allows on-demand and at scale distribution of tasks to human workers around the

world. In such settings, online workers come and complete small tasks posted by a company,

working for as long or as little as they wish. Such temporary employer-employee relationships

give rise to adverse selection, moral hazard, and many other challenges. How can we ensure that

the submitted work is accurate, especially when the verification cost is comparable to the cost of

performing the task? How can we estimate the exhibited quality of the workers? What pricing

strategies should be used to induce the effort of workers with varying ability levels? We develop

a comprehensive framework for managing the quality in such micro-crowdsourcing settings: First,

we describe an algorithm for estimating the error rates of the participating workers, and show

how to separate systematic worker biases from unrecoverable errors and generate an unbiased

“worker quality” measurement. Next, we present a selective repeated-labeling algorithm that

acquires labels in a way so that quality requirements can be met at minimum cost. Then,

we propose a quality-adjusted pricing scheme that adjusts the payment level according to the

contributed value by each worker. We test our compensation scheme in a principal-agent setting

in which workers respond to incentives by varying their effort. Our simulation results demonstrate

that the proposed pricing scheme is able to induce workers to exert higher levels of effort and

yield larger profits for employers compared to the commonly adopted uniform pricing schemes.

We also describe strategies that build on our quality control and pricing framework, to tackle
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crowdsourced tasks of increasingly higher complexity, while still maintaining a tight quality

control of the process.

Keywords: crowdsourcing, pricing/incentive mechanisms, workflows, quality assurance, agency theory,

service level agreement, simulation

1 Introduction

Crowdsourcing has emerged over the last few years as an important new labor pool for a variety of

tasks (Malone et al., 2010), ranging from micro-tasks on Amazon Mechanical Turk (AMT) to big innovation

contests conducted by Netflix and Innocentive. Mechanical Turk, in particular, dominates today the market

for crowdsourcing “micro-tasks”, which are easy for humans to accomplish, but remain challenging for

computers (Ipeirotis, 2010). The employers on Mechanical Turk, who are called requesters in the Mechanical

Turk parlance, can post a variety of small tasks, such as image tagging, language translation, text annotation,

and so on. Workers complete these tasks and get compensated in the form of micro-payments, typically in

the range of 5 to 20 cents per task. The immediate and elastic supply of labor makes it possible to complete

these tasks with low latency and high throughput.

Despite the promise, significant challenges remain. Workers in crowdsourcing markets usually have

different levels of expertise and experience, which cannot be communicated through traditional signals such

as education level and work experience. Understandably, workers may also adjust their effort in response to

incentive schemes, and exhibit heterogeneous quality in task execution. Unfortunately, verifying the quality

of every submitted answer is an expensive operation and negates many advantages of crowdsourcing: the

cost and time for verifying the correctness of the submitted answers (e.g., checking the answers for a question

such as “Do you see any recognizable human face in the picture?”) is typically comparable to the cost and

time for performing the task itself. The difficulty of verification, combined with a uniform pricing scheme

(i.e., paying all the workers the same price for completing the same type pf task), leads to both adverse

selection and moral hazard: crowdsourced tasks are more appealing to workers who are less capable; and

once hired, workers choose to exert an inefficient level of effort. The abundance of low-quality work (Wais

et al., 2010) harms the reliability, scalability, and robustness of online labor markets.

Our main research objective is to develop a comprehensive framework for assuring the quality of the results

of crowdsourcing processes in a cost-effective manner. Without loss of much generality, we focus on quality

control for tasks that have answers consisting of a small set of discrete choices (e.g., “Does this photograph

violate the terms of service? Yes or No.”). While this might seem limiting, we show in Appendix 8.2 that

many complex tasks can be broken down into a set of simpler operations for which a multiple choice task

2



serves as a key building block for quality assurance. Hence, our proposed scheme naturally fits into such

workflows and provides a fundamental quality control mechanism for other more complicated operations.

Such synergies lead to workflows that can accomplish complex tasks with guarantees of high-quality output,

even when the underlying workforce has uncertain, varying, or even moderate-to-low quality.

Our first contribution is to use a decision-theoretic approach to create a “quality score” for each worker:

The quality score is an unbiased estimate of the true uncertainty in the answers provided by the worker,

after removing any systematic bias, and taking into account the costs of different types of errors.1

We then look at a “streaming” environment, where workers arrive over time while we are running

the task, and so incoming workers can be assigned to different tasks dynamically. We introduce a novel

selective repeated-labeling strategy which allocates more labels to tasks that are expected to incur higher

misclassification costs, based on the estimated quality of the workers that have already worked on the tasks.

We demonstrate significant savings in labor costs and execution time by using our dynamic resource allocation

mechanism.

Having a reliable worker quality estimation method and a cost-effective selective repeated-labeling strategy,

we next turn our attention to determining a fair and incentive-compatible pricing scheme for the workers. In

particular, we consider a model with strategic workers of heterogeneous abilities, and propose an incentive

mechanism that compensates workers according to their contribution towards achieving the required accuracy

level. The contributed value of each worker is estimated based on the idea that multiple low-quality workers

can work in tandem to generate high-quality data. Since workers’ quality measurements are inherently

uncertain, we also establish a payment scheme in which we pay workers based on the lower estimates of

their quality, effectively withholding some payment for the workers that pass the test of time and prove

themselves to really be reliable workers. As our quality estimates become more precise over time, we refund

the “withheld” payment, ensuring that, in the limit, workers receive a payment that corresponds to their

true quality, even in the presence of measurement uncertainties.

The remainder of the paper is organized as follows. Section 2 reviews related literature. Section 3 outlines

the modeling assumptions and formalizes the problem. Section 4 describes the quality-estimation framework

for the workers and the data. Section 5 presents the dynamic resource allocation mechanism, which saves

labeling resources effectively, while still maintaining the required level of data quality. Section 6 proposes a

pricing scheme, in a principal-agent setting, that rewards workers according to the value that they contribute

as well as the competition in the market. The experimental results in Section 7 demonstrate a significant

improvement over existing baselines, in terms of both data quality and workforce engagement. Section 8

concludes by describing the managerial implications, limitations, and directions for future research.

1For example, allowing a porn image to pass a moderation filter is often costlier compared to blocking incorrectly a
legitimate image.
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2 Literature Review

Our work lies at the intersection of computer science, information systems and economics. In this section, we

survey the literature in the following streams of research: quality estimation and control, active information

acquisition, agency problems (adverse selection and moral hazard), and payment schemes.

2.1 Quality Estimation and Control

One common approach to measure the quality of submitted answers is to use “gold” data: insert a small

percentage of tasks for which the correct answers are known, and measure the performance against these tasks.

The testing of worker quality using “gold” labels is related to, but distinct from, two lines of research: test

theory in psychometrics and education (Crocker and Algina, 2006; DeMars, 2010), and acceptance sampling

in operation management (Dodge, 1973; Wetherill and Chiu, 1975; Berger, 1982; Schilling, 1982). Existing

test theory models are appropriate for accurate ability estimation. However, these models do not consider

the additional costs that can be incurred: Each time we test a worker, we forfeit the opportunity to get

some work done. This is analogous to the inspection cost in manufacturing process. Optimal acceptance

sampling maximizes the profits of producers by striking the appropriate balance between quality assurance

and total cost. A key difference is that in acceptance sampling, a production lot of items will get rejected if

the number of defective items in a sample exceeds a threshold, whereas in crowdsourcing markets that deal

with information goods, low-quality work can be combined to provide high-quality outcomes.

Another method to ensure quality is to rely on majority voting: ask multiple workers to complete the

same task and use majority voting to identify the correct answer. In reality, most employers check agreement

of workers with majority voting and dismiss workers systematically in disagreement with the majority. The

disadvantages of this approach are: first, it does not account for heterogeneity in the exhibited quality of the

workers; second, we have little knowledge about the correctness of the majority labels; and third, it suffers in

the face of diligent and informative workers whose answers are biased.

Dawid and Skene (1979) propose an expectation maximization (EM) algorithm to estimate the diagnostic

error rates of doctors when the patients’ true diagnoses are not available. Variations of the algorithm were

recently proposed by Carpenter (2008) and by Raykar et al. (2010). The algorithm iterates until convergence,

following two steps: (1) estimates the true response for each patient, using records given by all the observers,

accounting for the error rates of each observer; and (2) estimates the error rates of observers by comparing

the submitted records with estimated true response. Welinder et al. (2010) proposed a generative Bayesian

model in which each annotator is a multidimensional entity with variables representing competence, expertise

and bias. One major objective across all these approaches is to estimate the error rates for each worker. In

our work, we leverage the error rates of individual workers to obtain an unbiased quality measurement that
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eliminates systematic worker biases.

2.2 Active Information Acquisition

Active information acquisition, which focuses on acquiring various types of information incrementally, so as to

cost-effectively achieve different objectives, has been an important topic in machine learning and management

literature. Moore and Whinston (1986, 1987) develop a theoretical decision-making framework in which the

decision-maker gathers costly information optimally and sequentially to reduce the uncertainty associated

with the final decisions. There have been a large number of papers (Cohn et al., 1994; Lewis and Gale,

1994; Roy and McCallum, 2001; Saar-Tsechansky and Provost, 2004) devoted to active learning, which aims

to economize resources on training instances that are more likely to be informative for building classifiers.

Another stream of papers (Lizotte et al., 2002; Zheng and Padmanabhan, 2006; Saar-Tsechansky et al., 2009)

study the active feature-value acquisition problem where the values of features of the training data are costly

to acquire.

In the context of repeated labeling using multiple noisy workers, Sheng et al. (2008) and Ipeirotis

et al. (2014) have developed several different selective repeated-labeling strategies and shown that selective

allocation of labeling resources can improve the overall labeling quality. But those strategies all suffer from the

same drawbacks: all the workers are assumed to have equal level of quality when labeling each instance, and

the same costs are incurred for different types of misclassification. We propose an expected-misclassification-

cost-based selective repeated-labeling method which accounts for the heterogeneity in both worker quality

and misclassification cost.

2.3 Agency Problems

Agency theory (Jensen and Meckling, 1976; Eisenhardt, 1989) maintains that the existence of information

asymmetry between principals and agents can lead to both adverse selection (Akerlof, 1970) and moral

hazard (Hölmstrom, 1979).

The pre-contractual problem of adverse selection arises since the agents possess private information of

their true ability. In micro-task crowdsourcing platforms, because of the relative anonymity of the workers,

the employer cannot readily assess the workers’ qualifications to fulfill the tasks. The inability to differentiate

between competent and incompetent workers leads to a situation where high-quality workers leave the market,

and only low-quality workers remain. This might cause market failure: “it is quite possible to have the

bad driving out the not-so-bad driving out the good in such a sequence of events that no market exists at

all” (Akerlof, 1970). One mechanism to deal with this problem is reputation systems (Resnick et al., 2000;

Dellarocas, 2003), which rely on the assumption that the past performance of workers reflects their true

5



ability. Reputation systems require a relatively large amount of historical data about the performance of

each worker on each particular type of task, which is unfortunately largely missing in dynamic crowdsourcing

settings. Our scheme can work either independently or in tandem with the existence of a reputation system.

Reputation can be easily incorporated in our model as a prior belief about the true quality of the worker,

which can be further updated as the worker engages in more tasks.

The post-contractual problem of moral hazard takes place when the agent’s effort cannot be perfectly

observed. Online paid crowdsourcing allows employers to reach distant workers but makes the monitoring

of worker behavior challenging. Therefore, self-interested workers are more likely to engage in shirking

or other types of opportunistic behavior to maximize their own profits. Since effort is not observable,

compensation is often contingent on output. However, output is in many cases not one-dimensional but

multifaceted (Holmstrom and Milgrom, 1991). In our context, both the quantity and quality of output are

important to the employers. The existing literature models the tradeoff between quantity and quality in two

ways. One stream of papers takes a multi-dimension approach in which quantity and quality are treated as

two independent decision variables, and the agent’s total cost depends on the effort that she devotes to each

duty (Holmstrom and Milgrom, 1991; Olmos and Mart́ınez, 2010). Another stream of papers captures the

trade-off using a single decision variable, i.e., the average time spent per task (Lu et al., 2009; Anand et al.,

2011; Kostami and Rajagopalan, 2013). In this paper, we adopt the second approach because it highlights

the intrinsic quantity-quality trade-off in the simplest manner: the longer a worker spends on each task, the

higher typically the quality of the submitted answers, but at the expense of completing fewer tasks. Proper

compensation methods might provide explicit incentives for workers to submit high-volume and high-quality

work (Lazear, 1986).

2.4 Payment Schemes

The choice of payment scheme has been a central topic of research in economics and management. A variety

of payment schemes have been proposed and used in practice, such as fixed-wage, piece-rate, quota (Bonner

et al., 2000), tournament (Lazear and Rosen, 1979) and piece-rate with monitoring (Nagin et al., 2002).

Previous work has attempted to assess the relative effectiveness of various payment schemes (Lazear, 2000;

Bonner et al., 2000; Agranov and Tergiman, 2013) either empirically or experimentally, but most of these

papers only focus on one dimension of worker performance (i.e., quantity), leaving the testing about the

effect on quality untouched. There are a few exceptions: for example, Paarsch and Shearer (2000) uses a

structural model to analyze the payroll records of a tree-planting firm and show that workers under piece-rate

contracts have higher productivity in terms of quantity but lower quality; Nagin et al. (2002) examine the

data collected from an experiment in a call center and find that a reduction in monitoring rate actually
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increases the likelihood of making bad calls.

Fortunately, the effect of compensation schemes on quantity and quality has gained growing interest in

crowdsourcing settings. This is partly because the employer-employee relationships that develop in online

marketplaces are short term, thereby increasing the agency risks towards employers. Mason and Watts (2010)

found that a quota scheme performed better than a piece-rate scheme in motivating high-quality work. Harris

(2011) showed that introducing both a bonus (on matches) and a penalty (on misses) into a piece-rate scheme

improves the quality of the submitted work.

Our work differs from previous papers in several important respects. First, we have a nearly costless

monitoring because the testing of worker quality in our setting is achieved by comparing one worker’s labels

with those given by a group of others.2 Second, labels provided by low-quality workers are valuable because

they can be aggregated to generate data that meet the prescribed level of quality. These allow us to develop

a novel quality-adjusted piece-rate payment scheme which rewards workers for both quantity and quality.

To the best of our knowledge, this paper is to date the first to study the design of a comprehensive

framework for quality assurance in a crowdsourcing setting where workers with heterogenous ability levels

act strategically to maximize their expected profits by varying the effort they devote to each task. From a

methodological standpoint, this paper integrates elements from quality control, active information acquisition

and agency theory and brings both managerial and technical perspectives to crowdsourcing research.

3 Modeling Framework

In this section, we describe our modeling assumptions and formalize the problem. For model simplicity,

we only consider the case of one type of task, one client, one service provider, and a pool of crowdsourced

workers with varying ability levels. Table 1 summarizes the key notations used in the paper.

Task

In our labeling task, each object o is associated with a latent true class label T (o), picked from one of L

different labels. The true class label T (o) is unknown and the task is to identify the true label for the object

o.

Client

The client is the owner of the unlabeled objects, and wants the objects labeled with correct categories. To

quantify the quality of labeling, the client provides a set of misclassification costs c: the cost cij is incurred

when an object with true label i is classified into category j. The client requires a service level agreement

2The monitoring accuracy depends on both the number and the quality of labels devoted to each task.
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Notation Definition

O The set of objects that need to be labeled
L The set of possible labels for the objects in O

T (o) True class of object (o)
π Vector with prior probabilities for object classes
πi Prior probability for class i

p(o) Vector with probability estimates for the true label of object (o)

p
(o)
i Probability that the true label of object (o) is i

K(o) Set of workers that assign labels to object (o)

O(k) Set of objects labeled by worker (k)

π
(k)
j Probability that worker (k) assigns label j

l
(k)

(o) Label that worker (k) assigns to object (o)

I(l
(k)

(o) = i) Indicator function for the event l
(k)

(o) = i

e(k) Confusion matrix for worker (k)

e
(k)
ij Probability that worker (k) will classify an object with true category i into category j

θ(k) Dirichlet parameters for error rate distributions of worker (k)
c Matrix with the misclassification costs
cij Cost incurred when an object with true label i is classified into category j
τc Cost threshold specified in service level agreement (SLA)
S Fixed price charged to the client for objects with average misclassification cost below τc
φ(k) Latent ability matrix of worker (k)

w(k) Reservation wage per unit time of worker (k)

h(k) Lifetime of worker (k)

Table 1: Key Notations Used

(SLA), with the guarantee that the average misclassification cost of the labeling will not exceed a threshold

τc.
3 The client offers to the service provider an exogenously defined, fixed piece-rate price S for labeled

objects4 with average misclassification cost not exceeding τc.

Service Provider

The service provider5 receives, from the outside client, the stream of jobs that need to be completed, together

with the quality/cost requirement. The received tasks are posted on the crowdsourcing market for workers to

work on. The service provider announces a price scheme and pays each worker according to the worker’s

quality, on a piecemeal (i.e., per task) basis. The service provider acts as an intermediary between the client

and workers by ensuring a particular level of data quality for the client, and monitoring the performance of

crowdsourced workers. The goal of the service provider is to maximize its own rate of profit.

3The cost can be determined post hoc, for example, using acceptance sampling (Schilling, 1982), and the decision
on whether the promised labeling quality is met would be made accordingly.

4Although we assume that the price is exogenously defined, the price can also be defined by the service provider in
response to competitive pressures. The only assumption that we need is the existence of a piece-wise price S.

5E.g., https://crowdflower.com/
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Workers

Workers in crowdsourcing markets come to work on the available tasks. Each worker (k) is associated with:

(1) a latent ability matrix φ(k), with φ
(k)
ij being the probability that worker (k) will classify an object with

true category i into category j when the worker invests infinite time in the labeling;6 (2) a reservation wage

w(k), that is, the lowest wage per unit time at which the worker will accept the task; and (3) a lifetime h(k),

which represents the total amount of time available to the worker. The distribution of ability, reservation

wage, and lifetime fΦ,W,H(φ, w, h) is common knowledge. However, the individual values of φ(k), w(k), and

h(k) for each worker are all private knowledge of the workers and not known apriori to the service provider.

Following Lu et al. (2009), we characterize the intrinsic tradeoff between the quality and the productivity

of a worker in a simple form: invested time per task increases the exhibited quality of the worker but reduces

the number of tasks that the worker can work on during her lifetime. Specifically, for a worker (k) who

spends time t on each task, the exhibited quality matrix is given by g(φ(k), t), where g is a nondecreasing

and concave function of time, indicating a diminishing marginal improvement in quality from an increase in

time. Since the lifetime is allocated equally across all the tasks, the productivity of this worker is h(k)/t (i.e.,

number of tasks worker (k) can complete throughout her lifetime). Each worker is a profit-maximizer: given

the payment scheme announced by the service provider, the worker chooses the amount of time spent on

each task to maximize her expected profits per unit time.7 (Note that, of course, she always has the option

to not participate if her reservation wage is higher than the maximal attainable profits.)

4 Quality Estimation

In reality, the exhibited quality of a worker is jointly determined by her underlying true ability and the time

she devotes to each task, and cannot be directly observed. The challenge facing the service provider is to

come up with an effective strategy to estimate worker quality. Towards this, in Section 4.1, we describe a

scheme that uses redundancy to generate estimates of the type and prevalence of the errors committed by

workers in their tasks. Then, in Section 4.2, we investigate some problems of using error rates as a measure

of quality, and describe how to generate an unbiased quality estimator, using a decision theoretic framework.

4.1 Worker Quality Estimation

An early paper by Dawid and Skene (1979) described how the diagnostic error rates of doctors can be

estimated when the correct answers for the diagnoses are unknown. The basic idea is to rely on redundancy,

6This matrix captures the limit of worker’s ability. As will be discussed shortly, a decrease in working time will
induce a decline in worker’s exhibited quality.

7We assume that the workers are risk-neutral.
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that is, to obtain multiple opinions about the diagnosis. We rephrase their algorithm into our problem

setting, in which workers assign labels to objects. The algorithm iterates until convergence, following two

steps: (1) estimate the true class for each object, using labels provided by the workers, accounting for the

error rates of each worker; and (2) estimate the error rates of workers by comparing the submitted labels

with estimated correct class for each object. The final outputs of this expectation-maximization algorithm

are the class probability distribution p(o) for each object (o) and the estimated error rates for each worker

(k) represented by a “confusion matrix” e(k).8 The algorithm performs well when each worker submits a

sufficient number of labels. Unfortunately, participation in crowdsourcing environments follows a very skewed

distribution (Stewart et al., 2010; Nov et al., 2011) with only a few workers contributing a lot, while the

majority submit only a few tasks. In such a setting, maximum likelihood approaches result in over-confident

estimates of the error rates of the workers.

Following Raykar et al. (2010), we move from maximum likelihood estimates to Bayesian ones. If the true

class of an object is i, we model the error rates of the worker (k) as a Dirichlet distribution with parameter

vector θ
(k)
i . The value of θ

(k)
ij is given by θ

(k)
ij = α

(k)
ij + n

(k)
ij , where n

(k)
ij represents the number of times that

the worker classified objects of class i into class j and α
(k)
ij captures the prior belief. If we start with an

uninformative prior, then θ
(k)
ij = 1+n

(k)
ij . Using this strategy, the error rates of a worker can be fully captured

by a set of Dirichlet distributions (which reduce to Beta distributions for the binary case). Algorithm 1

presents a sketch of the process, where θ(k) parameterizes the error rate distributions of worker (k) and e(k)

is defined by the expected values.9

4.2 Generating Unbiased Quality Measurements

The confusion matrix e(k) for each worker (k) is not a scalar, and therefore cannot be used as a simple metric

of the worker quality. A straightforward method is to simply sum up the non-diagonal entries of the matrix

e(k), weighting each error rate by the estimated prior of the corresponding class (i.e., how often the worker

submits an incorrect label). Unfortunately, this approach would incorrectly reject biased but careful workers.

Consider the following example:

Example 1 Two workers are working on the task of classifying web sites into two groups: porn and notporn.

Worker A is always incorrect: labels all porn web sites as notporn and vice versa. Worker B is lazy and

classifies all web sites, irrespectively of their true class, as porn. Which of the two workers is better? A

simple error analysis indicates that the error rate of worker A is 100%, while the error rate of worker B is

8The element in the i-th row and j-th column of the confusion matrix e
(k)
ij gives the probability that worker (k)

classifies an object with true class i into class j.
9Since crowdsourcing workers tend to have heterogeneous levels of quality, we use uninformative priors in our

estimation (i.e., α
(k)
ij = 1).
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Input: Set of Labels {l(k)(o)}
Output: Confusion matrix e(k) for each worker (k), Class priors π, Class probability estimates p(o)

for each object (o)

Initialize class probability estimates p(o) for each obect (o):p
(o)
i = (

∑
(k)∈K(o) I(l

(k)

(o) = i))/(
∣∣∣K(o)

∣∣∣);1

while not converged do2

Estimate the θ(k): θ
(k)
ij = α

(k)
ij + n

(k)
ij = α

(k)
ij +

∑
(o)∈O(k) p

(o)
i I(l

(k)

(o) = j) ;3

Estimate the confusion matrix e(k): e
(k)
ij = θ

(k)
ij /(

∑L
m=1 θ

(k)
im );4

Estimate the class priors π: πi = (
∑

(o) p
(o)
i )/(|O|);5

Compute the object-class probabilities p(o) for each object (o):6

p
(o)
i =

πi
∏

(k)∈K(o)
∏

m(e
(k)
im )

I(l
(k)
(o)

=m)

∑
q πq

∏
(k)∈K(o)

∏
m(e

(k)
qm)

I(l
(k)
(o)

=m)
;

end7

return {e(k)}, class priors π, {p(o)}8

Algorithm 1: Bayesian expectation maximization algorithm for worker error rates estimation.

only 50%.10 However, it is not difficult to see that the errors of worker A are easily reversible, while the

errors of worker B are irreversible. In fact, with this reversal, worker A can be utilized as a perfect worker,

while worker B is a spammer.

Naturally, a question arises: Given estimates of the confusion matrix e(k) for each worker (k), how can

we distinguish between low-quality workers and high-quality, but biased, workers? How can we separate

systematic biases from the intrinsic, non-recoverable error rates?

We start with the following observation: Each worker assigns a “hard” label to each object. Using the

error rates for this worker, we can transform this assigned label into a “soft” label (i.e., posterior estimate),

which is the best possible estimate that we have for the true class. If we have L possible classes and the

worker assigns class j as a label to an object, we can transform this “hard” assigned label into the “soft”,

posterior label:
〈
π1 · e(k)1j , . . . , πL · e

(k)
Lj

〉
, where πi is the prior that the object belongs to class i and e

(k)
ij is

the probability that worker (k) classifies into class j an object that in reality belongs to class i. Of course,

the quantities above need to be normalized by dividing them with π
(k)
j =

∑L
i=1 πi · e

(k)
ij , where π

(k)
j denotes

the probability that worker (k) assigns label j.

Now, we can proceed to estimate the cost of labeling. To estimate the expected cost of each soft label,

we need to consider the costs associated with all possible classification errors. In the simplest case, we have a

cost of 1 when an object is misclassified, and 0 otherwise. In a more general case, we have a cost cij when an

object of class i is classified into category j.

10Assume, for simplicity, equal priors for the two classes.
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Input: Confusion matrix e(k), Misclassification cost matrix c, Class prior vector π
Output: Expected cost cost(k) for each worker (k)
foreach worker (k) do1

Estimate π
(k)
l (how often the worker (k) assigns label l);2

cost(k) = 0;3

foreach label l, assigned with probability π
(k)
l do4

Compute the posterior probability soft(k)(l) that corresponds to label l assigned by worker (k);5

Using Proposition 2, compute ExpCost(soft(k)(l)) for the soft label;6

cost(k) += ExpCost(soft(k)(l)) · π(k)
l ;7

end8

end9

return cost(k) for each worker (k)10

Algorithm 2: Estimating the Expected Cost of each Worker

Proposition 2 Given the classification costs c and a soft label p = 〈p1, p2, . . . , pL〉, the expected cost of the

soft label p is ExpCost (p) = min
1≤j≤L

L∑
i=1

pi · cij.

The proof is straightforward. The expected classification cost if we report j as the true class is equal to

the posterior probability of the object belonging to class i (namely, pi), multiplied with the associated cost of

classifying an object of class i into class i (namely, cij). The best decision is to report the category j with

the minimum expected classification cost across all classes. The expected cost can help us make the best

classification decision in the case where we receive only a single label per object. Given that we know how to

compute the expected cost of each label, we can now easily estimate the expected cost of each worker (k).

Algorithm 2 illustrates the process.

Example 3 Consider the costs for the workers A and B from the previous example. Assuming equal priors

across classes, and cij = 1, if i 6= j and cij = 0, if i = j, we have the following: The cost of worker A is 0, as

the soft labels generated by A are 〈0, 1〉 and 〈1, 0〉. For worker B, the cost is 0.5 (the maximum possible) as

the soft labels generated by B are all 〈0.5, 0.5〉 (i.e., highly uncertain).

It turns out that workers with confusion matrices that generate posterior labels with probability mass

concentrated into a single class (i.e., confident posterior labels) will tend to have low estimated cost, as

the minimum sum in Proposition 2 will be close to 0. On the contrary, workers that generate posterior

labels with probabilities widely spreaded across classes (i.e., uncertain posterior labels) will tend to have high

misclassification costs. Notice, as illustrated in the example above, that it is not necessary for a worker to

return the correct answers in order to have low costs. Our quality metric based on expected misclassification

costs resolves quite a few issues with online workers who exhibit systematic biases in their answers but also

put a lot of effort into coming up with the answers. Prior approaches that rely on agreement generate a
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significant number of rejections for such workers, which in turn discourages them from working for employers

that heavily rely on agreement.

5 Selective Repeated Labeling in Data Quality Assurance

In the previous section, we focused on a static setting: we have all the data, perform the analysis, and

infer data and worker quality. In reality, workers arrive to the market according to some exogenous traffic

process, so labels are often obtained incrementally and dynamically. As mentioned in the modeling section,

the payment of the service fee is contingent on the assurance of a particular level of data quality. Therefore,

it is important to monitor efficiently the quality level of the delivered data, and to allocate worker resources

appropriately. The key insight is that, given the set of labels assigned to an object, it is possible to estimate

its class probability distribution and expected misclassification cost (Section 5.1), and based on the expected

misclassification costs of the objects, the service provider can allocate labeling resources in a way that

increases data quality in a cost-effective manner (Section 5.2).

5.1 Data Quality Estimation

In the labeling process, an important parameter for the service provider to determine is the number of workers

to be assigned to each particular object. As more workers inspect and label an object, the confidence about

the classification decision increases, in expectation: the more workers assigned to each object, the higher

the integrated labeling quality. At the same time, the service provider wants to minimize the labor costs.

Since the goal is to have an overall data quality higher than the quality promised in the SLA, it is optimal to

assign to each object enough labels so that the expected misclassification cost of the labeled object is just

below the one specified in the SLA.

How can we estimate the quality of the labeling? Assume that we have an object that has been labeled

by m workers, and that these workers assigned a multiset of labels j = {j1, j2, · · · , jm}, where js is the label

assigned by the s-th worker in the set. Using the results from Section 4, we assume that we have an estimate

of the confusion matrix for each worker, which we denote as e(s) (see Section 3). We also assume that

given the true class of the object, the labels submitted by different workers are conditionally independent.

Under the conditional independence assumption, the probability of seeing a particular label assignment

j = {j1, j2, · · · , jm} for an object of true class l is given by:

P (j|e(1), e(2), · · · , e(m), l) =

m∏
s=1

e
(s)
ljs

(1)
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Using Bayes’ Rule, we have the posterior probability of the object belonging to class l, given by:

P (l|j, e(1), e(2), · · · , e(m)) ∝ πl · P (j|e(1), e(2), · · · , e(m), l) = πl ·
m∏
s=1

e
(s)
ljs

(2)

This is the best possible estimate that we have for the true class of the object, similarly to the “soft” label

we generate in Section 4.2, but now combining the labels from multiple workers. Using Proposition 2, we can

estimate the expected misclassification cost of this object. As before, objects with posterior probabilities

concentrated in one class have low expected misclassification costs while those with posterior probabilities

spreaded across classes have high misclassification costs, and therefore, need more additional attention.

5.2 Selective Repeated Labeling Based on Expected Misclassification Cost

Given the quality estimate (i.e., expected classification cost) for each object, we can move to devise a labeling

policy for the service provider to assign incoming workers to objects. The current state-of-the-art strategy

for selective repeated labeling using only the information in the label multiset is the “new label uncertainty”

(NLU ) presented by Ipeirotis et al. (2014), in which the next object to (re-)label is the one with the highest

label uncertainty score (without considering the different quality levels of individual workers). In this paper,

we introduce a new expected-misclassification-cost-based selective repeated-labeling strategy (ExpCost) which

allocates more labeling resources to the objects with high expected classification costs. When a worker

arrives, ExpCost assigns her to label the object with the highest expected misclassification cost, as long as

the object has an expected cost higher than the one promised in the SLA.11 (If the cost is lower, the service

provider is ready to deliver the objects with estimated labels to the client.) Our ExpCost method improves

upon NLU by explicitly taking into account workers’ heterogenous levels of quality and the different costs

incurred by various types of misclassifications. We demonstrate the superior performance of ExpCost next,

using a set of simulation experiments.

5.3 Effectiveness of ExpCost in Achieving Data Quality

We test the performance of the following repeated-labeling strategies: (1) GRR (generalized round-robin)

which assigns the next worker to label the object with the fewest labels; (2) NLU which assigns the next

worker to label the object with highest label uncertainty score (Ipeirotis et al., 2014); and (3) ExpCost

which prioritizes objects with high expected misclassification costs. In both GRR and NLU, the final class is

determined using simple majority voting (MV) because the methods are agnostic to differences in worker

11In the actual implementation, the service provider can either meet the SLA in expectation, or with a certain
confidence level. A higher confidence level reduces the risk of failing to meet the standard but demands more labeling
resources.
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Figure 1: Average true classification cost as a function of the number of labels acquired, for a round
robin strategy (GRR), a selective labeling strategy based on label uncertainty (NLU ), and our
proposed strategy based on expected cost (ExpCost)

quality when labeling the same object. In contrast, in ExpCost, the final class is determined using weighted

majority voting, as discussed in the context of the EM algorithm (see Section 4.1).

The simulation setup is as follows: we have 1000 objects, evenly assigned to two categories, and 200

workers. We draw the confusion matrix e of each worker from a set of two beta distributions: Beta(4,2)

and Beta(2,4), each corresponding to a row of the confusion matrix e. Each time, we draw a worker

uniformly from the worker pool, and depending on the strategy used (GRR, NLU, and ExpCost), we assign

the worker to the example with the highest priority. We test the performance of our proposed method

under two settings: a symmetric cost matrix c(a) =

(
0 1 ; 1 0

)
, and an asymmetric cost matrix

c(b) =

(
0 1 ; 10 0

)
.

Figure 1 shows the actual misclassification cost of the data as a function of the number of labels acquired

for GRR, NLU, and ExpCost, under the two cost settings. The first observation is that the ExpCost method

beats both GRR and NLU consistently. The advantage becomes even more substantial when classification

costs are asymmetric. Second, in Figure 1(a), NLU and ExpCost have a similar performance during the early

stage (when the number of labels acquired is fewer than 4000). This happens because the EM algorithm has

not obtained good estimates for workers yet. The performance gap between ExpCost and NLU increases

later on, showing that knowing the individual worker quality can help achieve better data quality.12

12For all the later experiments, we use the ExpCost method for label resource allocation.
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5.4 Batch Processing

Two minor points limit the applicability of the labeling strategy described above in real-world large data

environments. First, at each time point, we need to compute the expected classification costs of all the

objects and choose the one with the highest cost, which is computationally expensive. Second, we tend

to assign workers to objects for which we are less certain about first; however, an accurate estimation of

worker quality relies on a good estimation of the labels for the objects that the worker has already worked on.

This poses a disadvantage for the early-coming workers since they need to wait for a long time to get their

expected cost correctly estimated. To avoid the computational complexity and latency in worker quality

updates, we divide the full set of objects into a number of subsets N = {N1, N2, · · · , Nn}, where each Ni

only contains a relatively small number of objects.13 We will start with the first subset N1, and move to N2

when the average expected cost of misclassification in N1 is below the one specified in SLA, and so on.

6 Quality-Adjusted Pricing Scheme

The previous two sections deal with the crowdsourcing process, assuming workers’ participation and effort

decisions are given. However, in reality, workers are often rational agents and respond to external monetary

incentives. Therefore, it is important for the service provider to design and implement an appropriate payment

scheme to induce workers to behave in a desired manner. As a first step towards this objective, in Section 6.1,

we discuss how to correctly assess the monetary value of workers to the service provider; and in Section 6.2,

we propose a quality-adjusted piece-rate pricing scheme that ties payment to worker performance.

6.1 Monetary Value of Workers with Heterogeneous Quality

For ease of exposition, we first divide workers into two groups, qualified and not qualified: A worker is

a qualified worker if the quality of the worker satisfies the SLA; otherwise, the worker is considered an

unqualified worker. Since the client pays S for each successfully labeled object with labeling quality above the

promised level, each label submitted by a qualified worker is worth S to the service provider. However, many

workers in crowdsourcing markets fall into the category of unqualified workers whose quality does not meet

the level promised by the service provider. In fact, there might be cases where no worker satisfies the desired

quality.14 Simply considering these workers as having zero value and disregarding their labels is short-sighted

and renders the problem essentially intractable. Although each individual worker does not necessarily submit

13The number of objects within each batch can be decided by the service provider. Smaller batches save computation
time at the cost of suboptimal resource allocation.

14Or, more commonly, it is not cost-effective to allow workers to be slow and careful in order to meet the SLA
requirement. As specified in the modeling framework, the marginal improvement in quality from worker’s additional
effort is diminishing.
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Figure 2: The relationship between the number of workers and integrated expected cost

high-quality labels, a group of them as a whole may be able to meet the SLA requirement. Several papers in

the literature (Sheng et al., 2008; Snow et al., 2008; Welinder et al., 2010; Raykar et al., 2010; Ipeirotis et al.,

2010; Bachrach et al., 2012) have shown that multiple, low-quality workers can be used to generate results

that have high quality. The focus of this section is to examine the value of such “unqualified” workers.

The objective of the service provider is to get data labeled with classification cost lower than the level

determined by the SLA. In Section 5, we described how we can improve data quality (and decrease expected

cost of an object), by allocating multiple workers to label it. Therefore, a set of unqualified workers that in

tandem can generate labels of high quality can be considered equivalent to a single, qualified worker. From

this, we determine the value of unqualified workers according to the level of redundancy required to reach

the required quality level.

Example 4 Suppose that a client has a binary classification problem with equal priors, misclassification

costs set to 1, a fixed price of $1 offered to the service provider, and a SLA that requires a classification cost

lower than 0.1. If we have workers with a confusion matrix of e =

 q 1− q

1− q q

, how many workers do

we need to assign to each object, to achieve the SLA requirement? Figure 2 shows the relationship between

the number of workers and the integrated expected cost with the value of q ranging from 0.60 to 0.90 with an

interval of 0.05. The black dash line indicates the SLA-promised cost level. We can see that:

1. A worker with q = 0.9 is a qualified worker, and is worth $1 to the service provider.

2. A worker with q = 0.8 is unqualified. However, a set of 3 workers with q = 0.8 generate labeling of

SLA quality. Therefore a worker with q = 0.8 is worth $0.33.

3. We need 9 workers with q = 0.7 to reach the SLA quality, therefore a worker with q = 0.7 is worth
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$0.11.

The example above illustrates that the value of a worker is inversely proportional the number of workers

with the same error rates required to achieve the acceptable level of cost. The example illustrates the process

for a worker with a specific confusion matrix; next, we show the process for estimating the value of a worker

with an arbitrary confusion matrix e.

Definition 5 The value v(e) of a worker with a confusion matrix e is: v(e) =
S

d(e)
, where d(e) is the

number of workers with confusion matrix e required to reach the SLA-defined classification cost of τc, and S

is the price charged to a client for a unit of SLA-compliant work. For qualified workers d(e) = 1, while for

unqualified workers d(e) > 1.

Now the key challenge is to estimate the value d(e) for an arbitrary confusion matrix e. For this, we

need to estimate the number of workers with identical confusion matrix e that are required to generate

labeling of acceptable quality. Assume that we have m workers with identical confusion matrix e who

assign labels to an object. This generates a label assignment l = {l1, · · · , lm}, which, because of the

exchangeability of the labels, can be represented as a count of all the class labels n = {n1, · · · , nL}. When

the true class label is i (which occurs with probability πi), this label assignment happens with probability

Mult(n|m, ei·) =

(
m

n1, · · · , nL

)
·
L∏
j=1

(eij)
nj , which is the probability mass function (pmf) of the multinomial

distribution with parameters m (count of trials) and ei· (the row of the confusion matrix e that corresponds

to the class i). Integrating this over all the classes, we get the overall probability of seeing n is:

P (n) =

L∑
i=1

πi ·Mult(n|m, ei·) =

(
m

n1, · · · , nL

)
L∑
i=1

πi ·
L∏
j=1

(eij)
nj (3)

Following the same procedure in Section 5.1, for each label assignment n = {n1, · · · , nL}, the “soft” label

before normalization is proportional to:

〈
π1 ·

L∏
j=1

(e1j)
nj , . . . , πL ·

L∏
j=1

(eLj)
nj

〉
(4)

The expected misclassification cost associated with the label assignment n is then estimated using

Proposition 2. By repeating the process across all the possible label assignments and weighting the cost of

each one by its occurrence probability, we get the average misclassification cost when using m workers with

confusion matrix e. Knowing how to compute the integrated expected cost, the value derivation becomes

easier. Given a worker with specific confusion matrix e, we simply find the minimum number of workers d(e)

we need to achieve the required cost level.
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Input: Confusion matrix e, Misclassification cost matrix c, Class prior vector π, Unit price for
qualified objects S, Sample size N , Maximum number of workers D

Output: Value v(e)
for x = 1 to N do1

Generate object x with true class drawn from the prior probability distribution π;2

Using Proposition 2, compute ExpCost(x) for the prior probability vector;3

end4

cnt = 0;5

while cnt ≤ D ·N do6

Pick the object y with the highest expected cost (i.e., ExpCost(y) ≥ ExpCost(x), ∀x);7

Draw one label for the object y, following confusion matrix e;8

cnt = cnt + 1;9

Using Equation (4), compute the posterior probability vector p(y) that corresponds to object y;10

Using Proposition 2, compute ExpCost(y) for the posterior probability vector p(y);11

SumCost = 0;12

for x = 1 to N do13

SumCost = SumCost + ExpCost(x);14

end15

cost =
SumCost

N
;16

if cost ≤ τc then17

break;18

end19

end20

if cnt ≤ D ·N then21

d(e) =
cnt

N
; v(e) =

S

d(e)
;

22

else23

v(e) = 0;24

end25

return v(e)26

Algorithm 3: Estimating the value v(e) of a worker with confusion matrix e

Unfortunately, except for very simple cases, there is no closed form solution to this problem, and the

computational complexity increases exponentially with the value of d(e). In addition, the d(e) generated

above is likely to be an overestimate as we force each label assignment to have equal number of labels. As

illustrated in the previous section, selective label acquisition can potentially reduce the amount of labels

required to achieve quality level. Therefore, we resort to a Monte Carlo approach for estimating d(e) in

which labels are drawn incrementally and prioritized to objects with high expected misclassification costs,

allowing some types of label assignments to have fewer labels than others. Algorithm 3 illustrates the overall

process.15

15To save computation cost without sacrificing too much accuracy, we set D = 30 and N = 1000 in the actual
implementation.
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6.2 Quality-Adjusted Piece-Rate Pricing Mechanism

The objective of the service provider is to maximize profits, which depends on both the quantity and the

quality of the labels submitted by workers. As illustrated in the previous analytical and experimental

papers (Lazear, 1986; Paarsch and Shearer, 2000), simple piece-rate pricing schemes are likely to induce

workers to favor quantity to the exclusion of quality and hurt the profitability of the service provider.

Therefore, it is necessary to tie payment to quality and give workers an incentive to invest more effort on

each task.

The service provider knows: (1) the distribution of worker’s ability, reservation wage, and lifetime

fΦ,W,H(φ, w, h); and (2) the relationship between worker’s ability, effort and exhibited quality level g(φ, t).

Although both ability φ and effort t are not publicly observable and thus cannot be contracted upon, the

exhibited quality of the workers can be estimated using the approach presented in Section 4. The service

rewards each worker based on a simple sharing rule: a proportion of contributed value will be given back to

the worker (i.e., r(e) = α · v(e), 0 < α < 1). The problem for the service provider is to find an optimal α

that maximizes its own rate of profit. This is essentially a quality-adjusted piece-rate pricing mechanism that

rewards for both quantity and quality.16 The profit-sharing model encourages workers to behave in a manner

that aligns with the objective of the service provider.

Suppose that the service provider announces a payment scheme r(e) = α · v(e) to the worker in

the crowdsourcing pool. A given worker with ability matrix φ, reservation wage w, and lifetime h will

participate and choose an effort t∗ if and only if the following two constraints are satisfied: (i) incentive

compatibility (IC): t∗ = arg maxt r(g(φ, t)) · h/t = arg maxt α · v(g(φ, t))/t; and (ii) individual rationality

(IR): α · v(g(φ, t∗))/t∗ > w. In this case, the net benefit that the service provider derives from this worker

is (1− α) · v(g(φ, t∗)) · h/t∗. If (ii) does not hold, the worker will not participate and the service provider

receives no benefit. The expected net profit of the service provider under payment scheme r(e) = α · v(e) is

given by integrating this over all possible values of ability matrix φ, reservation wage w, and lifetime h.

The optimal pricing scheme r∗(e) = α∗ · v(e) solves the following maximization problem:

α∗ = arg max
α

∫ ∞
0

∫ ∞
0

∫
φ

(1− α) · v(g(φ, t∗)) · h/t∗ · fΦ,W,H(φ, w, h)dφdwdh

subject to t∗ = arg max
t

v(g(φ, t))

t
(IC)

and
α · v(g(φ, t∗))

t∗
> w (IR)

(5)

When distribution fΦ,W,H(φ, w, h) is known, α∗ can be computed through a variety of optimization

methods, returning r∗(e), the optimal piecemeal price to pay for a worker with exhibited quality matrix e.

16Note that in principle the service provider could do better by using other forms of contracts. We choose this
pricing mechanism because it is easy to implement, and yet very effective in inducing an efficient level of effort.
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We should notice that the optimality condition above depends on the excess demand for labor (so that

the service provider’s dominant strategy is to acquire labels from each worker). This is realistic, since many

companies nowadays have massive amounts of data and thus are experiencing a shortage of workers who can

help them label these data. The model can be easily adapted to the setting in which supply exceeds demand

by lowering the proportion of money transferred to workers until supply matches demand.

6.3 Real-Time Pricing under Imperfect Knowledge of Worker Quality

The estimates we get following the techniques in Section 4.1 are deterministic, but imperfect. Although our

model assumes that the true quality of a worker e is fixed, our estimate of e is changing over time. Just based

on sampling theory, the piece-rate payment of a worker is expected to fluctuate as the worker labels more

examples, even if the payment is expected to converge towards the optimal price over time. Unfortunately,

this fluctuation is not an acceptable part of a payment scheme. A worker would be negatively surprised

if suddenly their wage plummets because of a single labeling mistake. How should we pay workers in this

setting? Ideally, we want a payment scheme that:

1. Rewards workers with a payment as close as possible to their (unknown) optimal price.

2. Avoids payment fluctuations, resulting from expected measurement fluctuations, preferring a smooth

payment evolution over time.

3. Avoids a decreasing payment slope, which can be interpreted as punishment, and prefer payment

schemes that have either stable or increasing payment slopes.17

Condition 1 allows maximum worker engagement: Each worker has a reservation wage and a lifetime: if

the average payment per unit time at the end of lifetime is lower than the reservation wage, the worker will

not participate in the task. Of course, the more examples a worker labels, the closer the payment r̂(e) is

to the optimal payment r∗(e) under perfect knowledge of worker quality. Unfortunately, this scheme also

leads to significant up and down fluctuations (violating condition 2), especially early on, leading to worker

confusion. To avoid the sudden fluctuations, we can pay based on a moving average of worker quality, which

softens the potential estimation fluctuations. Unfortunately, paying using a moving average can also lead

to a decrease in payment over time, if the worker starts by giving a few correct answers before naturally

reverting to the mean performance.

Our solution is a process that we call payment with reimbursements. Our scheme rewards workers

over time by paying based on pessimistic estimates of worker quality (i.e., underpays initially) but compensates

for the underpayment by reimbursing in later periods the payment withheld due to the uncertainty. To ensure

17Yin et al. (2013) found that an increasing payment slope improved worker quality while a decreasing payment
slope hurt.
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Figure 3: An illustration of Real-Time Payment

a pessimistic estimate of quality, we impose a low prior on the Bayesian estimation of the worker quality,

assuming that the worker has an average quality that generates a very low payment. When a non-spammer

worker submits answers, the distribution of quality increases, allowing the payment to increase over time.

Then, as we get more data, we proceed with the payment estimations, reimbursing the workers for the

underpayment in the prior periods. Given that payment over time is effectively a sum of random variables,

Chernoff’s bound applies in this case, guaranteeing that the uncertainty of payment decreases exponentially

with the number of tasks submitted; therefore, our payment scheme converges into the real payment with

exponentially low probability of overpaying.

Figure 3 illustrates the process: for a worker, we divide his lifetime into a set of small periods (for example,

paying every 10 completed tasks). At the end of each period, we first pay the worker the deserved earnings

in the current period, then reimburse the worker for the price difference between this period and the previous

period for all the tasks completed before this period. Suppose that the piece-rate payment after the first 10
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submissions is R1, the worker gets paid 10 ·R1 at the end of Period 1. Now, the piece-rate payment after the

second 10 submissions is R2, we first pay the worker 10 ·R2 and then reimburse the “unpaid” part for the

first 10 submissions by the price difference 10 · (R2 −R1). Similarly, in the third period we examine if there

are “unreimbursed” payments for the first and second periods, and do the same. We repeat the process until

the worker reaches the end of the lifetime.

Notice that the strategy has the fortunate side-effect of incentivizing long-term participation: At any

given time point, the worker improves payment by: (a) increasing the estimated pay rate r̂(e) (and bringing

it closer to optimal payment r(e)), and (b) receiving a reimbursement payment (phrased as “bonus” to the

worker) for all the underpayments in the prior periods. This strategy encourages good workers to work more,

allowing us to understand better their quality. On the contrary, a worker that does not plan to work for long

(therefore imposing to the service provider the risk of handling the unknown quality of the worker), receives

a comparatively lower payment for the same amount and quality of work. So each incoming worker goes

through a “reputation building” stage during which she is likely to be underpaid. However, as she completes

more and more tasks, we will know better about her true quality and her payment will then increase.

7 Simulation Experiments

To test the performance of our proposed quality-adjusted piece-rate pricing strategy, we run a set of simulation

experiments, where the workers are strategic actors who respond to changes in economic incentives. Simulation

experiments are a powerful tool for modeling complicated market environments and conducting analyses

under various parameter values (e.g., Chiang and Mookerjee, 2004; Adomavicius et al., 2009; Ketter et al.,

2012). We describe below the setting for the simulations.

7.1 Market Simulation

We assume that the service provider receives a total of N = 10, 000 binary labeling tasks from a client,

who is willing to pay S = 200 for each successfully completed task. The SLA requirement sets the average

misclassification cost at τc ≤ 0.01. The entire simulation process is described by the flowchart in Figure 4,

which involves the decision-making of both the service provider and the crowdsourcing workers.

The Service Provider

The simulation process for the service provider is as follows:

S1) The service provider posts the job and announces a pricing scheme r(e) to pay workers.
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Figure 4: The entire simulation process

S2) If all the objects are successfully labeled, the service provider withdraws the job from the marketplace

and releases the data to the client. We denote this time by TF . Otherwise, the service provider moves to

the next batch of size Nb = 500 of unlabeled objects.

S3) If the average cost of the objects in the current batch does not exceed τc, go to Step S2. Otherwise, the

service provider assigns the next incoming worker to the object with the highest expected cost in the

current batch.

The Workers

Every ta = 10 time units, a new worker comes to the marketplace.18 The ability a, reservation wage w,

and lifetime h of the worker are generated as follows: (a) Draw va, vw and vh from a trivariate normal

distribution N (µ,Σ), and then (b) Transform va, vw, vh to a, w, h by setting: a = logit−1(va), w = exp(vw),

18For ease of exposition, we assume that worker’s arrival follows a uniform process.
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(b) ρ12 = 0.8

Figure 5: Histograms of Parameter Values

h = exp(vh).19 The parameters for the trivariate normal distribution are given below.

µ =


µ1

µ2

µ3

 =


0.0

2.0

5.0

 ; Σ =


σ2
1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ2
3

 =


1.0 ρ12 0.0

ρ12 1.0 0.0

0.0 0.0 1.0


We test our strategy under two values of ρ12, varying the correlation between worker reservation wage and

worker ability: (a) ρ12 = 0.0, i.e., the quality of the workers and their reservation wages have no correlation,

and (b) ρ12 = 0.8, i.e., quality of the workers and their reservation wages are positively correlated. Figures 5(a)

and (b) show the scatter plot and the two histograms along x-axis and y-axis for ρ12 = 0.0 and ρ12 = 0.8,

respectively. As we can see from the plots, when ρ12 = 0.0 the reservation wage is independent of worker’s

ability while when ρ12 = 0.8 the reservation wage tends to be higher as the ability of workers increases.

The simulation process for each worker after the drawing is presented below:

W1) The worker sees the pricing scheme r(e) announced by the service provider and estimates her optimal

effort which yields the maximum expected payment throughout her lifetime.

W2) If the expected payment per unit time under optimal effort is larger than worker’s reservation wage, go

to Step W3. Otherwise, the worker exits the job.

W3) If the worker reaches her lifetime, she stops working. Otherwise, she labels the next object assigned by

the service provider.

19Following previous literature (Van den Berg, 1994; Bloemen and Stancanelli, 2001; Pannenberg, 2010; Wang et al.,
2011), we assume that both worker’s reservation wage and lifetime follow log-normal distributions.
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7.2 Evaluation Criteria

The service provider is interested in optimizing its profit per unit time:
N · S −

∑
(k) r(e

(k), n(k))

TF
, where

r(e(k), n(k)) refers to the reward given to worker (k) who labels n(k) objects with exhibited error rates

captured by e(k), and TF is the total time used to complete the job. Here we assume the labeling tasks all

arrive at the same time but workers come continuously so that demand always exceeds supply. The profit

per unit time captures the expected profit that the service provider can gain from each worker since workers’

arrival process is exogenous and uniform.

7.3 Profit Maximizing Under Different Pricing Mechanisms

In Section 3, we assumed that additional effort put by the workers can increase the exhibited quality of

submitted work but this increase is diminishing. We did not impose any explicit functional form on the

relationship. To illustrate how our algorithm works, we set a specific quality function here, based on the

ability value drawn previously: e00 = e11 = ĝ(a, t) = 0.5 + 0.5a(1 − exp(−ξ(t − t)+). Here, ξ reflects how

demanding the task is in terms of effort, and is set as ξ = 3. We use (·)+ to denote the maximum of 0 and a

given value. Therefore, t is the minimum effort that can be exerted. We set t = 0.5 in our simulation. This

minimum effort assumption20 is realistic in the sense that workers need to spend some time in reading the

actual content of the question before making any sensible choice, and prevents the extreme case where the

workers invest zero effort on each task and submit an infinite number of labels.

The rationale behind this function specification hinges on the following two key considerations. First,

workers differ in their inherent ability to perform specific tasks, which imposes an upper bound on their

exhibited quality levels. Second, workers can vary the amount of effort they put into each task, and thus the

quality of their submissions. The value of function ĝ(·) is bounded between 0.5 and 1 (0 ≤ a ≤ 1).

We compare our proposed pricing scheme with two other pricing schemes commonly adopted in crowd-

sourcing platforms, namely piece-rate pricing with block, and piece-rate pricing with block and penalty.

Next, we explain what each pricing scheme means, and analyze the strategic behavior of workers and

profit-maximization decision of the service provider under each one.

7.3.1 Piece-Rate Pricing with Block (PR-B)

Piece-rate pricing with block is widely used in the today’s crowdsourcing platforms. The way it works is that

the service provider announces a pre-specified error tolerance level ε so that any worker with an error rate

on her submitted labels exceeding ε will be blocked from participating and receive no payment. Under this

scheme, as long as the worker meets the error threshold, all of his submitted labels will get paid. In reality, the

20Lu et al. (2009) imposed the minimum effort assumption in their paper.
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service provider can also vary the value of error tolerance level ε to obtain a desirable performance. Suppose

that the service provider decides to employ this pricing scheme and compensate all the workers who are

not blocked, the optimal piece-rate price r∗b and error threshold ε∗b are given by the following maximization

problem:

(r∗b , ε
∗
b) = arg max

r,ε

∫ ∞
0

∫ ∞
0

∫
ĝ(a,∞)≤ε

(v(ĝ(a, t∗))− r) · h/t∗ · fA,W,H(a,w, h)dadwdh

subject to t∗ = arg min
t

ĝ(a, t) ≤ ε (IC)

and
r

t∗
> w (IR)

(6)

7.3.2 Piece Rate Pricing with Block and Penalty (PR-BP)

Besides the option of blocking badly performed workers, many crowdsourcing platforms also allow the service

provider to impose a penalty for every piece of work detected as incorrect. A natural way to enforce this

is to only pay the rate for those correct answers. Under this scheme, the optimal piece rate r∗bp and error

threshold ε∗bp are given by the following:

(r∗bp, ε
∗
bp) = arg max

r,ε

∫ ∞
0

∫ ∞
0

∫
ĝ(a,∞)≤ε

(v(ĝ(a, t∗))− r · ĝ(a, t∗)) · h/t∗ · fA,W,H(a,w, h)dadwdh

subject to t∗ = arg max
ĝ(a,t)≤ε

ĝ(a, t)

t
(IC)

and
r · ĝ(a, t∗)

t∗
> w (IR)

(7)

7.3.3 Quality-Adjusted Piece-Rate Pricing (QA-PR)

Our proposed quality-adjusted piece-rate pricing mechanism discourages low-quality workers by offering them

low wage rates instead of a harsh block or rejection. The optimal pricing scheme r∗q (e) = α∗ · v(e) is given by

Equation (5) in Section 6.2. We can rephrase the maximization problem for this specific simulation setting

as follows:

α∗ = arg max
α

∫ ∞
0

∫ ∞
0

∫
a

(1− α) · v(ĝ(a, t∗)) · h/t∗ · fA,W,H(a,w, h)dadwdh

subject to t∗ = arg max
t

v(ĝ(a, t))

t
(IC)

and
α · v(ĝ(a, t∗))

t∗
> w (IR)

(8)

7.4 Simulation Results

To ensure the robustness of the results, each experiment is replicated 20 times and the results are averaged

over all replicas. Note that the comparison is made under the same quality estimation and and label allocation

strategy, so any difference in performance would directly reflect the effect of employing different pricing
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Correlation Scheme Parameter Values Time Used Total Payment Unit Time Profit

ρ12 = 0.0
PR-B r∗b = 10.5, ε∗b = 0.23 19046 521925 77.84
PR-BP r∗bp = 14.3, ε∗bp = 0.23 17528 564050 82.06
QA-PR α∗ = 0.365 11629 765920 106.36

ρ12 = 0.8
PR-B r∗b = 14.9, ε∗b = 0.24 37519 817977 31.57
PR-BP r∗bp = 21.5, ε∗bp = 0.24 30879 884508 36.24
QA-PR α∗ = 0.545 13464 1174680 61.50

Table 2: Simulation results for the three pricing schemes

schemes.

Table 2 shows the final simulation results. The relative superiority of the three pricing schemes is consistent

across the two correlation conditions: QA-PR > PR-BP ≈ PR-B. Our QA-PR strategy outperforms the

second-best strategy PR-BP by 29.6% when there is no correlation between worker ability and reservation

age, and by 69.7% when workers’ ability levels and their reservation wages are positively correlated (i.e.,

ρ12 = 0.8). There are several points worth noting in our results. First, the time taken to achieve the SLA

requirement is much shorter under QA-PR scheme compared to the other two. By offering higher pay for

better quality, QA-PR attracts more good workers and induces a higher level of effort exerted on each task.

The improvement in the overall quality of the submitted work significantly reduces the number of labels

required to meet the SLA. Although the total amount of money paid to workers is slightly greater, QA-PR is

able to achieve the highest profit per unit time for the service provider by shortening the execution time.

Second, the unit time profits under positive correlation are overall lower than under no correlation, across

all the three pricing schemes. This is not too surprising, because when worker ability and reservation wage

are independently distributed, the service provider is still able to get some high-ability workers with low

reservation wages; however, this happens less often under the positive-correlation condition. It should be

noted here that a positive correlation between workers’ ability levels and reservation wages is more realistic

since high-ability workers are likely to have more outside options. Third, the advantage of QA-PR is more

pronounced under positive correlation. This is because both PR-B and PR-BP pay workers at a single price,

so the service provider has to keep the price low to accommodate the cost of dealing with low-quality labels.

When good workers have higher wage expectations, PR-B ends up with only low-ability workers remaining.

However, QA-PR is able to keep the high-ability workers because it provides performance bonuses to those

who submit results of higher quality.
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8 Discussion and Conclusions

To the best of our knowledge, this study is the first to propose a comprehensive framework for managing

and paying crowdsourced workers. Our approach integrates viewpoints from both managerial and technical

perspectives to explore a typical crowdsourcing setting: strategic workers with heterogeneous levels of ability

come into marketplace and decide whether to participate and how much effort to put forth according to

the payment scheme; and the service provider aims to achieve a certain level of quality assurance while

minimizing the labor costs. In this study, we consider the entire decision process of a service provider, from

quality estimation to resource allocation and to pricing scheme design. Our work fills the gap between the

machine learning literature, which focuses on the information acquisition components of the crowdsourcing

process without paying attention to the strategic behaviors of workers, and the management and economics

literature, which emphasizes the economic incentives of workers but fails to consider the informational aspects

of the process. The contribution of this paper is threefold: First, we present a novel strategy to separate the

systematic biases from unrecoverable errors workers exhibit, allowing us to better evaluate the quality of the

workers. Second, we introduce a dynamic resource allocation strategy that prioritizes labels on objects with

high expected misclassification costs. The selective labeling approach is able to achieve the same level of

data quality using fewer label acquisitions. Third, we propose a quality-adjusted piece-rate pricing scheme

that accommodates both adverse selection and moral hazard of workers, and conduct simulated experiments

to demonstrate its superior performance over two commonly used piece-rate pricing schemes. As illustrated

further in Appendix 8.2, our work serves as a fundamental quality control block for a variety of tasks, ensuring

that the outcome of crowdsourced production reaches the quality levels desired by the employers.

8.1 Practical Implications

Crowdsourcing is rapidly becoming a commonly used tool across many firms, from Fortune-500 companies to

startups. Amazon has been using paid crowdsourcing for more than 10 years now to de-duplicate products

in the catalogs uploaded to their platform by merchants. Metaweb, acquired by Google in 2010, has been

using paid crowdsourcing to create Freebase (Kochhar et al., 2010), which is the base for the Google

Knowledge Graph. Microsoft has built the Microsoft Universal Human Relevance System (UHRS)21 to

evaluate and improve the results in Bing, their search engine. Facebook is using crowdsourcing for content

moderation, and Twitter is using Amazon Mechanical Turk22 to improve their real-time event detection.

Many other companies use crowdsourcing either directly or through an intermediary (cf., the participants in

the CrowdConf conference). Firms are attracted to crowdsourcing because of the dynamic nature of hiring,

21http://www.signalprocessingsociety.org/technical-committees/list/sl-tc/spl-nl/2013-05/interview-crowdsourcing/
22http://engineering.twitter.com/2013/01/improving-twitter-search-with-real-time.html
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allowing quick scaling up and quick downsizing of the workforce, according to the needs of the company, with

reaction times within hours or even minutes. Crowdsourcing also provides a great way to help unemployed

and underemployed people. For example, Samasource, a nonprofit organization, divides projects from clients

into “microwork” for workers in developing regions (Gino and Staats, 2012).

Unfortunately, quality control remains an issue and most existing solutions simply attempt to screen

workers through multiple gold tests, and reject unqualified workers. The use of more fine-grained strategies

contributes to better utilization of crowdsourcing. The wider adoption of crowdsourcing can also lower

the barrier-to-entry for workers with no prior experience and reputation. Since there is no interview stage,

and workers can join the workforce at will, it becomes easier for unemployed people to find work and

prove their skills while working. Our approach can automatically provide a performance measurement for

each worker, and help build an honest reputation feedback mechanism that can facilitate the creation of

a healthy, well-operating crowdsourcing marketplace. Our pricing scheme further ensures that workers are

paid according to the value they contribute, incentivizing employers to open more of their tasks to “crowd

workers”. Moreover, since our pricing schemes ensures an (eventually) fair payment policy, good workers are

also encouraged to keep working for long periods of time, which reduces the churning of good workers—one

of the major problems for any employer, and a particularly acute one in crowdsourcing.

8.2 Limitations and Future Work

This study has several limitations and opens up opportunities for further research. In our study, we assume

that the ability of workers does not change over time. However, for many types of tasks in practice, there

might be either learning effects or tiredness effects, which lead to possible fluctuations in the ability and

the exhibited quality of workers. To account for this, we can apply a particle filtering method to track the

changes in worker quality (Crisan and Doucet, 2002; Donmez et al., 2010) and choose the size of window

for aggregation appropriately (Aperjis and Johari, 2010). We also assume zero knowledge about the worker

quality and start with an uninformative (and conservative) prior for quality estimation. It is possible that

sometimes the service provider has access to the past performance of workers on other tasks. The service

provider can utilize the inter-category reputation of workers (Kokkodis and Ipeirotis, 2013) by adjusting

the prior belief of workers’ quality in the quality estimation framework, which could potentially reduce the

inefficiencies caused by the inaccurate quality estimates especially during the early stage.

In our problem setting, there is only one service provider with monopolistic power. In real-life scenarios,

the service provider faces competition from other providers or employers. The competitiveness of the labor

market can be somewhat captured by workers’ reservation wages: the more competitive the market, the

more outside options workers have, and the higher their wage expectations. We also assume that the service
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provider knows or can estimate relatively well the joint distribution of worker abilities, reservation wage, and

lifetimes. In reality, the service provider needs to learn this distribution, especially in an environment where

workers arrive and leave the market freely and continuously. This estimation task should be studied carefully

across real labor marketplaces in future work. Another assumption we make is that the crowdsourcing

workers are purely selfish and only respond to extrinsic motivations. Previous studies (e.g., Rogstadius et al.,

2011) show that workers may also be driven by intrinsic motivation and put in effort even when monetary

rewards are low or absent. Therefore, our quality-adjusted pricing scheme is more appropriate to tasks

that are less interesting or have lower social value so that the extrinsic motivators dominate in workers’

decision-making. Future studies should conduct experiments with workers recruited from crowdsourcing

marketplaces to examine how they react to different quality control schemes and incentives, as well as the

influence of task characteristics on the effectiveness of the quality-adjusted pricing.

Despite these limitations, we believe that our current work provides a solid foundation on which future

work can build. Furthermore, our work can be used immediately by interested parties, allowing easier

management of crowdsourced workers, and therefore the development of further interesting applications,

enabled by crowdsourcing.
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Appendix: Importance of Quality Control for Multiple Choice

Questions

Our scheme can be directly applied to multiple choice questions, which already captures a large number of

tasks that are crowdsourced today (e.g., image moderation, spam detection, restaurant rating, etc.). We

would like to stress, though, that quality control mechanisms for multiple choice questions are at the heart of

many other, more complex, tasks that are also executed in crowdsourcing platforms. Below we give some

representative examples.

� Open-ended questions with correct or incorrect answers: Consider the task that asks workers

to collect information about a given topic; for example, “collect URLs that discuss massive online

education courses and their impact on MBA programs.” For this type of task, it is usually difficult or

feasible to enumerate all the correct answers, therefore it is not possible to control the quality of the

task using quality control for multiple choice answers directly. However, once an answer is provided,

we can easily check its correctness, by instantiating another task, asking a binary choice question: “Is

this submitted URL about massive online education courses and their impact on MBA programs?”

Thereby, one can break the task into two tasks: A “Create” task, in which one or more workers submit

free-form answers, and a “Verify’ task, in which another set of workers vets the submitted answers,

and classifies them as either “correct” or “incorrect”. Figure 6(a) illustrates the structure: the “Verify”

task controls the quality of the “Create” task; the quality of the “Verify” task is then controlled using

a quality control mechanism for multiple choice questions, similar to the one presented in this paper.

� Varying degrees of correctness: There are some tasks whose free-form answers are not right or

wrong but have varying degrees of correctness or goodness (e.g., “generate a transcript from this

manuscript,” “describe and explain the image below in at least three sentences”). In such a setting,

treating the submitted answers as “correct” or “incorrect” might be inefficient: a rejected answer would

be completely discarded, although it is often possible to leverage the low-quality answers to get better

results, by simply iterating. Past work (Little et al., 2010) has shown the superiority of the iterative

paradigm by demonstrating that workers were able to create image descriptions of excellent quality,

even though no single worker put any significant effort in the task. Figure 6(b) illustrates the iterative

process. There are four subtasks: The “Create” task, in which free-form answers are submitted, the

“Improve” task, in which workers are asked to improve an existing answer, the “Compare” task, in

which workers are required to compare two answers and select the better one, and the “Verify” task, in

which workers decide whether the quality of the answers23 is satisfactory. In this case, the “Compare”

23“Verify” task either accepts input directly from the “Create” task or gets the better answer returned by “Compare”
task.
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and “Verify” are multiple choice tasks, and one can use the mechanisms presented in this paper to

control the quality of the submitted answers (and of the participating workers). In turn, the “Create”

and “Improve” tasks are controlled by the “Verify” and “Compare” tasks, as one can measure the

probability that a worker submits an answer of high quality, or the probability that a worker is able to

improve an existing answer.

� Complex tasks using workflows: Initial applications of paid crowdsourcing focused primarily on

simple and routine tasks. However, many tasks in our daily life are much more complicated (e.g.,

“proofread the following paragraph from the draft of a student’s essay,” “write a travel guide about New

York City”) and recently, there is an increasing trend to accomplish such tasks by dividing complex

tasks into a set of microtasks, using workflows. For example, Bernstein et al. (2010) introduced the

“Find-Fix-Verify pattern” to split text editing tasks into three simple operations: find something that

needs fixing, fix the problem if there is one, and verify the correctness of the fix. Again, this task ends

up having quality control through a set of multiple choice tasks (verification of the fix, verification that

something needs fixing). In other cases, Kittur et al. (2011) described a framework for parallelizing

the execution of such workflows and Kulkarni et al. (2011) moved a step further by allowing workers

themselves to design the workflow. As in the case of other tasks that are broken into workflows of

micro-tasks, the quality of these complex tasks can be guaranteed by applying our quality control

scheme to each single micro-task, following the paradigms described above.
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Figure 6: Workflows for two types of tasks
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